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INTRAMOLECULAR DOUBLE MICHAEL REACTION III
STEREOSELECTIVE CHIRAL SYNTHESIS OF ATISIRAN-15-ONE
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Summary: Atisiran-15-one (5) was stereoselectively synthesized starting from
the ketone (10) through the intramolecular double Michael reaction.

Previously we have shown that the spiro fused bicyclo[2.2.2]octane ring
systems (3) can be constructed in a highly stereoselective manner by the
intramolecular double Michael reaction.1 The potential importance of this
novel reaction prompted us to disclose our own approach to a synthesis of the

AB-cis-atisirene type compound (4L2

COZR

) L

We now wish to report the highly stereccontrolled synthesis of atisiran-
15-one (5)3 starting from the optically active ketone (10) which carries the

correct relative stereochemistry between C_ and C10 positions. Our synthetic

strategy based upon the retrosynthetic anaf;sis is shown below.

The starting ketone {(10), [u]k; ~-39.10° (c = 0.44, CHC13), is readily and
stereoselectively available in an optically active form from (+)-Wieland-
Miescher ketone by the established method.4 The treatment of 10 with pyridi-
nium hydrobromide perbromide in AcOH at room temperature gave in 99 % yield
the bromoketone (11),5’6 m.p. 126 - 128°C, which was transformed into the
ketol (12)°'® in 97 % yield on the action of sodium hydroxide in aqueous DMF.’
Oxidative cleavage of 12 with lead tetraacetate in MeOH, followed by reduction
of the resulting aldehyde obtained in 90 % yield with sodium borohydride

furnished, in 97 % yield, the alcohol (13).6 Treatment of 13 with o-nitro-
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(8) (9) (10)

phenylselenyl cyanide in the presence of tri-g—butylphosphine,8 followed by
oxidation with 30 % H202 gave the alkene (14), [a]%} +22.9° (c = 0.28, CHC13).
After reduction with lithium aluminum hydride, the alcohol, m.p. 30 - 31 °c,
[G]EZ +5.0° (¢ = 0.24, CHC13), was converted into the acetal (15) in 84 %
overall yield from the alcohol (13) by oxidation with pyridinium chloro-
chromato followed by acetalization. The olefinic acetal of 15 was oxidatively
cleaved with osmium tetroxide and sodium periodate to provide the unstable
aldehyde (9) in 78 % yield. Aldol condensation of 9 with cyclohexanone was
conducted in the presence of lithium diisopropylamide in THF to afford 62 %
vield of the enone (16),6 m.p. 52 - 53°C, which was catalytically hydrogenated
to furnish gquantitatively the corresponding ketone. Formation of the silyl
enol ether from the ketone under the kinetically controlled condition, fol-
lowed by dehydrogenation with palladium acetate in the presence of p-benzo-
quinone9 yielded the enone (17)6 in 85 % yield.

Deprotection of the acetal (17) afforded 83 % yield of aldehyde, which
was then reacted with the Wadsworth-Emmons reagent10 to form the o,B-un-
saturated ester (18)6 as the E-isomer in 47 % yield. The double Michael
reaction of 18 was accomplished with lithium hexamethyl-disilazide at -78°C~
room temperature in Q—hexane—EtZO (8:1 v/v) to give the tetracyclic compound
(19),% m.p. 145 - 148°C, [a]}} Z4.0° (c = 0.30, CHCl;), in 53 % yield, as a
single isomer. The ester (19) was converted into the ketone (20) whose IR and
NMR spectra were identical with the reported data,11 by the sequential re-
actions as previous;2 reduction of 19 with diisobutylaluminum hydride followed
by oxidation with pyridinium dichromate and the decarbonylation12 of the
ketoaldehyde, m.p. 150 - 151°C, with tris(triphenylphosphine)chlororhodium.
Methylation of 20 with methyl iodide in the presence of lithium diisopropyl-
amide at -78 0°C furnished atisiran-15-one (5) as a single isomer, whose
spectral data were consistent with reparted ones.3

Further application of the intramolecular double Michael reaction to

other natural products is in progress.
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Scheme

reagents:  {a) Py HBr BrZ/ACOH (b) NaOH/DMF-HZO {c) Pb(OAc)4/Me0H-C6H6 (d) NaBH4/
MeOH (e) g;C6H4(N02)SeCN, nBu3P/THF (f) 30 % HZOZ/THF (g) LAH/EtZO (h) PCC/CH2C12
(i) Ho/*»/OH, TsOH/CGH6 {3) 0504, NaIO4 (k) cyclohexanone, LDA/THF (1) Hys pd-C/
EtOH (m)OLDA then TMSC1  (n) Pd(OAc)z, p-benzoquinone/CHSCN (0) 10 % HC104/THF

[
(p) (MeO)ZﬁCHZCOZMe, NaH/OME  (q) LiN(TMS)Z/g;hexane-Etzo (r) DIBAL-H/CH2C12 (s)pPDC/

DMF  (t) (Ph3P)3RhC1/xylene (u) Mel, LDA/THF
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